Lehrplan für das Fach Mathematik

(Schulcurriculum Klasse 9-12)

Deutsche Abteilung

91. Gymnasium

Prof. Konstantin GALABOV

Erstellt von Anna Tsaneva und Ludger Sternberg im Frühling 2017

Inhaltsverzeichnis:

Vorbemerkung	2 -
Klasse 9	<u></u> 3 -
Klasse 10	6 -
Klasse 11	8 -
Klasse 12	<u>.</u> - 10 -
Bewertung der Schülerleistungen im Fach Mathematik	- 12 -
Operatorenliste Mathematik der KMK	14 -

Vorbemerkung

Dieses Schulcurriculum für die Deutsche Abteilung wurde im Frühjahr 2017 auf der Grundlage des Kerncurriculums für deutschsprachige Auslandsschulen und Zweige an Auslandsschulen, die zum Abitur führen (Beschluss der Kultusministerkonferenz vom 29.04.2010), erarbeitet.

Schuleigene Vertiefungen und Erweiterungen, insbesondere Inhalte des bisherigen Lehrplans, die traditionelle Schwerpunkte der bulgarischen Mathematik berücksichtigen, um auf einen Studiengang in Bulgarien mit mathematischen Inhalten vorzubereiten, wurden aufgenommen. Dies geschah nach Möglichkeit und im Rahmen des Kerncurriculums.

Lehrplan und Schulcurriculum orientieren sich an den gymnasialen Lehrplänen des Landes Baden-Württemberg.

Durch das verbindliche Methodencurriculum der Schule werden die Schüler sukzessive mit den Operatoren (vgl. Operatorenliste Mathematik der KMK, Stand Oktober 2012) vertraut gemacht.

Das Schulcurriculum für die Klassen 9 und 10 der Deutschen Abteilung soll die Voraussetzungen für die Qualifikationsphase (Klassen 11 und 12) schaffen.

Dabei ist darauf zu achten, dass - orientiert an den "Hinweisen zur Differenzierung im Sekundarbereich an deutschen Auslandsschulen" (Stand Februar 1992) - Formen der Differenzierung in Bezug auf Inhalte, Methoden und Bewertung angewandt werden.

Da sich von Lerngruppe zu Lerngruppe diese Aufgabe verschieden stellt, wird weitgehend darauf verzichtet, die unterschiedlich didaktisch-methodischen Vorgehensweisen bestimmten Unterrichtsinhalten zuzuordnen.

Es hängt von der jeweiligen Lerngruppe ab und liegt im Ermessen des einzelnen Lehrers, nach welchen schülerbezogenen Merkmalen er die Lerngruppe in Untergruppen einteilt, denen eine eigene Lernstrategie zugeordnet werden kann. Durch möglichst viele unterschiedliche Sozial- und Arbeitsformen (neben Methoden des gemeinsamen Unterrichts zunehmend Methoden des kooperativen und des individualisierenden Unterrichts) sollen innerhalb der jeweiligen Lerngruppe eine optimale Förderung der leistungsschwächeren/lernlangsameren sowie der leistungsstärkeren/lernschnelleren Schülerinnen und Schüler gewährleistet werden.

Das vorliegende Schulcurriculum berücksichtigt auch die Vorgabe, dass die Schulen der ReFo-Region 16 (deutschsprachige Abteilungen an staatlichen Schulen in Staaten Mittel- und Osteuropas, zu denen die Deutsch Abteilung des Galabov-Gymnasiums Sofia zählt) im Fach Mathematik seit 2016 ein gemeinsames Abitur durchführen.

Die Deutsche Abteilung des Galabov-Gymnasiums Sofia umfasst die Jahrgangsstufen 9 – 12.

Im Folgenden wird das generische Maskulinum verwandt, die jeweiligen weiblichen Entsprechungen sind hierin miteinbezogen.

Stundenzahl: 3 Stunden à 40 Minuten pro Woche

36 Wochen x 3 Stunden = 108 Stunden

Inhalte	Zeit	Kompetenzen
I. Bruchterme	14	Der Schüler kann
- Definitionsmengen		- Rechenregeln zur Bruchrechnung anwenden.
- Reelle Zahlen		
- Multiplikation und Division		
von Bruchtermen		
- Addition und Subtraktion		
von Bruchtermen		
II. Gleichungssysteme höheren	10	Der Schüler kann
Grades		- Lösungswege und Ergebnisse verständlich und
- Lineare Gleichungssysteme		in angemessener Form
mit maximal drei		schriftlich darstellen,
Gleichungen und drei		• erläutern,
Unbekannten		präsentieren und
		• reflektieren.
		- Kenntnisse zu Gleichungen und
		Gleichungssystemen auf Problemstellungen aus
		Alltagssituationen, Mathematik,
		Naturwissenschaften, Wirtschaft und Technik
		anwenden.
III. Der Funktionsbegriff	16	Der Schüler kann
- Darstellung von Funktionen		- Informationen aus Funktionsgleichungen und
in sprachlicher,		Computeranzeigen
tabellarischer,		• entnehmen,
graphischer Form und		bearbeiten und
mithilfe von Termen		• interpretieren.
a) Lineare Funktionen		- Funktionsgleichungen aufstellen.
- Steigungsdreieck		
- Parallele und orthogonale		
Geraden		
b) Quadratische Funktionen		
- Scheitelpunkt, Nullstellen,		
Streckungen und		
Verschiebungen		
- Anwendungen		
- Optimierungsaufgaben		
IV. Der Begriff der	18	Der Schüler kann
Ähnlichkeit		- den Hauptähnlichkeitssatz für Dreiecke ohne
- Eigenschaften der ähnlichen		Hilfsmittel
Figuren		• angeben,
- Ähnlichkeitssätze für		an Beispielen erläutern und
Dreiecke		• anwenden.
- Anwendungen der		- den Strahlensatz (1. und 2. Teil)
Ähnlichkeitssätze		an Beispielen erläutern und
- Zentrische Streckung		• anwenden.

With the second second	1	
- Ähnlichkeitsbeziehungen am		- ähnliche ebene Figuren durch zentrische
Kreis		Streckung mit positivem Streckfaktor zeichnen.
		- den Einfluss des Streckfaktors
		• auf die Größe von Winkel,
		die Länge von Strecken und
		den Flächeninhalt bzw. den Rauminhalt
		beschreiben.
		- zentrische Streckungen und Ähnlichkeit mit
		dynamischer Geometriesoftware
		veranschaulichen.
V. Geometrie	10	Der Schüler kann
- Einführung von Vektoren in		- Ortsvektoren und Richtungsvektoren
der Ebene		unterscheiden.
- Ortsvektoren und		- die Lagebeziehungen von Geraden und
Richtungsvektoren		Punkten in der Ebene untersuchen.
- Geraden in der Ebene		- Richtungsvektoren der Geometrie und
- Lagebeziehungen von		Steigungen in der Analysis miteinander in
Geraden in der Ebene		Beziehung setzen.
VI. Die Satzgruppe des	18	Der Schüler kann
Pythagoras		- die Bedeutung der Begriffe Kathete,
- Kathetensatz		Hypotenuse benennen und anwenden.
- Höhensatz		- den Satz des Pythagoras und die Umkehrung
- Satz des Pythagoras		des Satzes
- Trigonometrische		• benennen,
Funktionen im		• formulieren,
rechtwinkligen Dreieck		beweisen und
- Eigenschaften der		• anwenden.
trigonometrischen		- Sach- und Anwendungsaufgaben zur
Funktionen		Satzgruppe des Pythagoras lösen und
- Bestimmung von		kontrollieren.
Flächeninhalten und		- für rechtwinklige Dreiecke die Definitionen
Volumina zu		von Sinus, Kosinus und Tangens eines Winkels
Parallelogrammen,		ohne Hilfsmittel angeben und an Beispielen
Trapezen, Dreiecken,		erläutern.
Kreisen,		- Winkel und Seitenlängen mit Hilfe von Sinus,
Kreisausschnitten,		Kosinus und Tangens berechnen.
sowie Prismen,		- Winkel zu Sinus-, Kosinus- und Tangenswerten
Pyramiden, Kegeln,		bestimmen.
Kugeln und		- Flächen- und Volumenbestimmungen an
zusammengesetzten		mathematischen Körper und Flächen durchführen.
Flächen und Körpern	12	
VII. Gleichungen und	12	Der Schüler kann
Ungleichungen		- Gleichungen und Ungleichungen lösen.
höheren Grades	12	Dor Schüler konn
VIII. Stochastik	12	Der Schüler kann
- Urliste, Anteile, Tabellen,		- Daten analysieren.
Säulen- und		- Datenmaterial mithilfe der Kenngrößen
Kreisdiagramme		arithmetisches Mittel, Standardabweichung und
- Median, Modalwert,		Stichprobenumfang charakterisieren und
arithmetisches Mittel,		interpretieren.
Spannweite		- mit Hilfe von Baumdiagrammen mehrstufige
- Vierfeldertafel		Zufallsexperimente veranschaulichen.

- Zufallsexperimente	-Wahrscheinlichkeiten von Ereignissen
- Baumdiagramme	bestimmen.
- Pfadregel	- Ereignisse verknüpfen
- Verknüpfung von	($A \cup B$, $A \cap B$, \overline{A}) und die Wahrscheinlichkeit
Ereignissen	der Verknüpfung bestimmen.
	- Ideen und Ergebnisse zur Beschreibung,
	Simulation und Berechnung von
	Zufallsexperimenten adressatengerecht
	• formulieren,
	bewerten und
	• präsentieren.

Stundenzahl: 3 Stunden à 40 Minuten pro Woche

36 Wochen x 3 Stunden = 108 Stunden

Inhalte	Zeit	Kompetenzen
I. Potenzen mit natürlichen	24	Der Schüler kann
Exponenten		- die Potenz- und Wurzelschreibweise
- Potenzregeln und ihre		ineinander umwandeln.
Anwendung		- die Potenzgesetze an Beispielen begründen
- Potenzen mit negativen		und mit und ohne Hilfsmittel anwenden.
Exponenten		
- Wissenschaftliche		
Schreibweise von		
großen und kleinen		
Zahlen		
- Potenzen von Summen /		
Pascal`sches Dreieck		
- Potenzen mit rationalen		
Exponenten		
- Höhere Wurzeln		
- Wurzelgleichungen		
II. Eigenschaften von	18	Der Schüler kann
Potenzfunktionen		- Informationen aus Funktionsgleichungen und
- Symmetrie von		Computeranzeigen
Funktionsgraphen		• entnehmen,
- Verschiebungen von		bearbeiten und
Potenzfunktionen		• interpretieren.
- Streckung und Stauchung von		 Lösungswege und Ergebnisse verständlich und
Potenzfunktionen		in angemessener Form
- Spiegelung von		schriftlich darstellen,
Potenzfunktionen an		• erläutern,
der x-Achse		präsentieren und
- Gerade und ungerade		reflektieren.
Funktionen		
- Umkehrfunktionen		
- Umkehrbarkeit und		
Monotonie		
- Betragsfunktionen		
III. Trigonometrie	28	Der Schüler kann
- Bogenmaß und Winkelmaß		- Gradmaß und Bogenmaß von Winkelgrößen
- Definition von Sinus, Kosinus		ineinander umwandeln.
und Tangens am		- den Zusammenhang der Graphen der
Einheitskreis		Funktionen f(x-d)+c und a f(x) mit dem Graphen
- Trigonometrische Funktionen		der Funktion
mit reellem		f(x) beschreiben.
Definitionsbereich		- den Einfluss der Parameter (a, b, c, d) auf die
- Additionstheoreme		Eigenschaften der Sinusfunktionen
- Sinussatz und Kosinussatz		$f(x)=a\cdot\sin(bx+c)+d$ sowie
- trigonometrische		$f(x)=\sin(x-d)$ beschreiben.
Gleichungen		

- Parametereinfluss bei		- spezielle Linien, Dreiecke und Vielecke in
$f(x)=a\cdot\sin(bx+c)+d$		Körpern erkennen.
IV. Die Exponentialfunktion	14	Der Schüler kann
- Eigenschaften der		- Funktionen zum Lösen inner- und
Exponentialfunktion		außermathematischer Probleme anwenden.
- Anwendungen:		- Exponentialfunktionen auf Wachstums- und
 Zinseszinsrechnung, 		Zerfallsprozesse
 radioaktiver Zerfall, 		anwenden,
 exponentielle 		dabei lineares und exponentielles Wachstum
Wachstumsprozesse		unterscheiden und
- Logarithmusfunktion als		von anderen Wachstumsprozessen
Umkehrung der		abgrenzen.
Exponentialfunktion		
- Logarithmenregeln		
- Eigenschaften der		
Logarithmusfunktion		
- Exponential- und		
Logarithmus-		
gleichungen		
V. Wachstum	10	Der Schüler kann
- momentane Änderungsrate		- das Steigungsverhalten von Funktionen
- Ableitung und		untersuchen.
Ableitungsfunktion		- Extrema mithilfe von Ableitungen bestimmen.
- Ableitungsregeln für		
Potenzen, Summen		
und konstante		
Faktoren		
- Monotonie		
- beschränktes Wachstum		
- Extremstellen		D C L "L L
VI. Kombinatorik	8	Der Schüler kann
- Das Zählprinzip		- Trefferzahl, Gewinn und Verlust (bei ein- und
- Tupel ohne und mit		zweistufigen Zufallsexperimenten auch ohne
Wiederholung		Hilfsmittel) bestimmen.
- Permutationen		- Ideen und Ergebnisse zur Beschreibung,
- geordnete Stichproben - Urnenmodelle		Simulation und Berechnung von
- Urnenmodelle - Zufallsvariablen		Zufallsexperimenten adressatengerecht
- Zuransvariabien		formulieren, bewerten und
		präsentieren.
VII. Geometrie	6	Der Schüler kann
- Vektoren im Raum	U	- die Lagebeziehungen von Geraden und
- Geraden im Raum		Punkten im Raum untersuchen.
- Gerauen iin Naum		runkten iin kaum untersuchen.

Stundenzahl: 4 Stunden à 40 Minuten pro Woche

36 Wochen x 4 Stunden = 144 Stunden

Inhalte	Zeit	Kompetenzen
I. Funktionen	16	Der Schüler kann
a) Eigenschaften von		- Funktionen zum Lösen inner- und
Funktionen		außermathematischer Probleme anwenden.
- Symmetrie		- Lösungswege und Ergebnisse verständlich und
- Monotonie		in angemessener Form
- Umkehrbarkeit		schriftlich darstellen,
b) Lineare Funktionen		• erläutern,
- Steigungsdreieck		präsentieren und
- Anwendungen		• reflektieren.
- Abstand von Punkten		
- Kreisgleichung		
II. Folgen und Reihen	32	Der Schüler kann
- Definition von Zahlenfolgen		- explizite und rekursive Darstellungen von
mithilfe expliziter und		Folgen aufstellen und auswerten.
rekursiver		- Informationen aus Funktionsgleichungen und
Darstellungen		Computeranzeigen
- Arithmetische und		• entnehmen,
geometrische Folgen		bearbeiten und
- Eigenschaften und		interpretieren.
Anwendungen		- das Verhalten von Funktionen an den Rändern
- Grenzwerte von Folgen		des Definitionsbereiches untersuchen, dabei
- Grenzwertsätze für Folgen		den Grenzwertbegriff aus der Anschauung
- Grenzwerte von Funktionen		heraus erklären und die Grenzwertschreibweise
- Grenzwerte an einer Stelle		$\lim_{x \to \infty} f(x)$ bzw $\lim_{x \to \infty} f(x)$ verwenden.
- Grenzwertsätze und		$x \rightarrow \infty$ $x \rightarrow x_0$
Anwendungen		
- Stetige Funktionen		
- Stetige Fortsetzung		
III. Differenzierbarkeit	46	Der Schüler kann
- Tangenten und		- die maximale Definitionsmenge von
Tangentengleichungen		Funktionen auch in Sachsituationen angeben.
- Sätze über differenzierbare		- sowohl ein anschauliches Verständnis von
Funktionen		Stetigkeit und Differenzierbarkeit als auch das
- Wiederholung der		Krümmungsverhalten zur Synthese von
Ableitungsregeln		abschnittsweise definierten Funktionen nutzen.
(Summe, Produkt,		- Monotonie- und Krümmungsverhalten von
Quotient, Verkettung)		Graphen erkennen und dies zur Begründung der
- höhere Ableitungen		Existenz von Extrem- und Wendepunkten
- Kurvendiskussion:		anwenden.
• Nullstellen,		- notwendige Bedingungen, sowie inhaltliche
 Monotonie, 		Begründungen zur Bestimmung von lokalen
• Extrema,		Extrem- und Wendestellen nutzen.
Wendepunkte		- Produkt-, Quotienten- und Kettenregel beim
- Untersuchung von		Ableiten von Funktionen anwenden.
Funktionsscharen		

- Randwertbetrachtungen - Nutzung von digitalen Darstellungsformen Darstellungsformen Extremstellen, Wendestellen und Krümmungsverhalten zum Lösen inner- und	
Darstellungsformen Extremstellen, Wendestellen und	
Krümmungsverhalten zum Lösen inner- und	
,	
außermathematischer Probleme anwenden.	
- Parametervarianten zur Anpassung von	
Funktionen an Daten durchführen.	
- bei Scharen von Funktionen, die durch	
Verknüpfungen und Verkettungen der e-	
Funktion mit ganzrationalen Funktionen	
entstehen, charakteristische Merkmale zum	
Lösen inner- und außermathematischer	
Probleme nutzen.	
IV. Integralrechnung 28 Der Schüler kann	
- Bestimmtes Integral als - bestimmte Integrale als Flächeninhalt deute	n.
Grenzwert von Ober Zusammenhang zwischen Differenzieren und	
und Untersummen Integrieren erläutern.	
- Eigenschaften des - Stammfunktionen der Funktionen	
bestimmten Integrals $(x \to \sin(x), x \to \sqrt{x} \text{ und } x \to x^n; \text{ darun})$	tor
l - Integralfunktionen	tei
- Hauptsatz der Differential- auch $x \to \frac{1}{x}$) bestimmen.	
und Integralrechnung - den Zusammenhang zwischen Ableitung und	t
- Stammfunktionen Integral zur Bestätigung von Stammfunktione	n
- Grundregel zur Berechnung anwenden.	
von Integralen - Rechengesetze für bestimmte Integrale	
- Integrale aus Summen anwenden.	
- Integrale mit konstanten - unbestimmte Integrale	
Faktoren • berechnen und	
- Unbestimmte Integrale • interpretieren.	
- Zusammenhang zwischen - Uneigentliche Integrale als Grenzwerte sowo	ohl
Flächeninhalt und von Beständen als auch von Flächeninhalten	
Integral interpretieren.	
- Flächeninhalte zwischen - geometrisch anschaulich den Hauptsatz der	
Funktionsgraphen Differenzial- und Integralrechnung begründer	١.
- Volumina von - die Volumenformel für Körper, die durch	
Rotationskörpern (nur Rotation um die x-Achse entstehen begründe	n.
Rotation um die x Flächeninhalte unbegrenzter Flächen	
Achse) bestimmen.	
- Aufstellen von	
Funktionsgleichungen	
mit Flächeninhalten	

Stundenzahl: 4 Stunden à 40 Minuten pro Woche

 1. Halbjahr 18 Wochen x 4 Stunden = 72 Stunden (davon 12 Stunden zur Wiederholung und Zusammenfassung des Stoffes für die Abiturprüfung)

- 2. Halbjahr (nach dem Abitur) 12 Wochen x 4 Stunden = 48 Stunden

Inhalte	Zeit	Kompetenzen
I. Die Exponentialfunktion	24	Der Schüler kann
- Eigenschaften		- asymptotisches Verhalten erläutern.
- Einführung der Eulerschen		- Verknüpfungen und Verkettungen der e-
Zahl e als Grenzwert		Funktion mit ganzrationalen Funktionen zur
- Ableitungen der e- und In-		Beschreibung von inner- und
Funktionen		außermathematischen Problemen untersuchen.
- Regeln von de l'Hospital mit		- begrenztes und logistisches Wachstum
Anwendungen		untersuchen.
- Funktionsuntersuchungen zur		- resultierende Differentialgleichungen im
e- und In- Funktion		Sachkontext der Wachstumsmodelle deuten.
- Funktionsscharen		
- Wachstums- und		
Zerfallsprozesse		
II. Integrationsregeln	14	Der Schüler kann
- Integration durch		- Integrationsregeln selbständig bei beliebigen
Substitution		Problemstellungen anwenden.
- Partielle Integration		- leichte Differenzialgleichungen lösen.
- Differenzialgleichungen		
III. Lineare Algebra	14	Der Schüler kann
- Lineare Gleichungssysteme		- lineare Gleichungssysteme mit der
und der Gauß-		eingeführten Technologie lösen.
Algorithmus		
- Struktur der Lösungsmenge		
linearer		
Gleichungssystemen		
- Anwendungsaufgaben:		
• LGS'e mit		
Formvariablen		
Textaufgaben mit		
einschränkenden		
Bedingungen	20	D 61 "I I
IV. Analytische Geometrie	28	Der Schüler kann
- Punkte, Pfeile und Vektoren		- die bildliche Darstellung und Koordinatisierung
- Darstellung von Vektoren		zur Beschreibung und Lösung von inner- und
- Verknüpfungen von Vektoren		außermathematischen Problemen in Ebene und
- Abstand von zwei Punkten im		Raum nutzen.
Raum		- Addition, Subtraktion und skalare
- kollineare Vektoren		Multiplikation von Vektoren anwenden und
- Ebenen im Raum		geometrisch veranschaulichen.
- komplanare Vektoren		- Vektoren beim Arbeiten mit geradlinig
- Lagebeziehungen von Ebenen		begrenzten geometrischen Objekten
im Raum		anwenden.

- Lagebeziehungen von		- unterschiedliche Lagebeziehungen von
Geraden und Ebenen		Geraden, Gerade und Ebene, sowie Ebenen und
im Raum		Ebenen untersuchen, Schnittprobleme lösen
- Abstandsberechnungen		und Ebenen beschreiben.
- Einführung von		- Abbildungen mithilfe von Matrizen
Abbildungsmatrizen		beschreiben.
V. Das Skalarprodukt	24	Der Schüler kann
- Länge und Senkrechtstehen		- das Skalarprodukt anwenden.
von Vektoren		- die unterschiedlichen Lagebeziehungen von
- Normalenform		Geraden, Gerade und Ebene, sowie Ebenen und
- Koordinatenform		Ebenen erfassen und begründen.
- Anwendungen		- Schnittprobleme lösen.
- Hesse'sche Normalenform		- Ebenen mit Parameter-, Normalen- und
- Abstandsberechnungen		Koordinatengleichung beschreiben.
- Winkelberechnungen im		- den Abstand eines Punktes von
Raum		einer Ebene bestimmen.
- das Vektorprodukt		- das Lotfußpunktverfahren nutzen, um den
- Nutzung von digitalen		Abstand eines Punktes von einer Ebenen zu
Darstellungsformen		berechnen.
und Rechenhilfsmitteln		- den Abstand eines Punktes von einer Geraden
		ermitteln.
		- den Abstand windschiefer Geraden
		berechnen.
		- das Skalarprodukt zur Bestimmung der
		Winkelgröße zwischen Vektoren nutzen.
		- Schnittwinkel bestimmen.
		- Spiegelungen und Symmetrien erläutern.
		- orthogonale Vektoren mithilfe des
		Vektorproduktes ermitteln.
VI. Stochastik	26	Der Schüler kann
- Erwartungswert		- Erwartungswert und Standardabweichung von
- Varianz und		Zufallsgrößen berechnen und interpretieren.
Standartabweichung		- Bernoulli-Experimente als mehrstufige
- Bernoulli-Experimente		Zufallsexperimente beschreiben und
- Bedingte Wahrscheinlichkeit		Wahrscheinlichkeiten mit Hilfe der Bernoulli-
- Binomialverteilung		Formel berechnen.
- Anwendungen		- die Bernoulli-Formel an einem Beispiel
- Testen von Hypothesen		begründen.
		- die Bedingungen für die Anwendbarkeit der
		Bernoulli-Formel prüfen und die Ergebnisse
		kritisch werten.
		- Binomialverteilungen auch unter Verwendung
		der eingeführten Technologie grafisch
		darstellen.
		- Erwartungswert und Standardabweichung
		einer binomialverteilten Zufallsgröße
		anwenden.
		- den Annahmebereich und Ablehnungsbereich
		für den zweiseitigen Signifikanztest bestimmen.
		- Fehler 1. und 2. Art benennen.

Bewertung der Schülerleistungen im Fach Mathematik

Die Bewertung und das Vergeben von Noten spielt unter den Erziehungsmitteln des Lehrers eine der wichtigsten Rollen. Dadurch kann er die Leistungen der Schüler bewerten, die Entwicklung der Schüler unterstützen und lenken.

Bei der Festlegung der Noten im Laufe des Jahres sollen nicht nur die punktuell erbrachten Leistungen, sondern auch der Fleiß des Schülers, seine Mitarbeit und seine Entwicklung berücksichtigt werden. Die Halbjahresnote und die Jahresendnote geben eine Rückmeldung darüber, inwieweit der Schüler die Leistungsanforderungen der einzelnen Fächer erfüllen kann.

Anzahl der Noten

Mit Ausnahme des 2. Halbjahres der Jahrgangsstufe 12 werden in jedem Halbjahr des deutschsprachigen Mathematikunterrichts mindestens 2 Arbeiten bzw. Klausuren geschrieben. Im 2. Halbjahr der 12. Klasse beschränkt sich die schriftliche Leistungskontrolle mit Rücksicht auf die Abiturprüfungen und den verkürzten Zeitrahmen auf 1 Klausur. Für die Notenfindung wird außer den schriftlichen Arbeiten auch die mündliche Leistung – also die Quantität und Qualität der Mitarbeit im Unterricht - herangezogen. Dabei erhält die mündliche Note pro Halbjahr das halbe Gewicht der schriftlichen Arbeiten oder Klausuren. In den Jahrgangsstufen 9 und 10 ist zu beachten, dass eine Kombinote gebildet werden muss. Diese ergibt sich zum einen aus der Note, die im deutschsprachigen Unterricht nach obigen Prinzipien gebildet wird, zum anderen aus der Note, die im bulgarischsprachigen Unterricht ermittelt wird. Dabei sollten die beiden Noten in dem Verhältnis zueinander gewichtet werden, wie die wöchentlichen Stundenzahlen zueinander stehen, also nach der jetzigen Regelung im Verhältnis 3 zu 1. Der so ermittelte Durchschnitt wird nach den Regeln des Rundens auf eine ganze Zahl gerundet, die die Halbjahres-, bzw. Jahresendnote ergibt.

Es versteht sich, dass die Notengebung niemals nur rein rechnerisch erfolgt. Ein pädagogischer Spielraum soll bestehen bleiben und genutzt werden um z.B. positive Tendenzen zu verstärken oder negative Tendenzen deutlich und rechtzeitig zu markieren. Auf der anderen Seite sollte die Notengebung jedoch unbedingt transparent und einsichtig bleiben. Die deutschen Lehrer haben sich bisher durchaus den Ruf einer gerechten Notengebung erworben und dabei diverse Versuche der Einflussnahme durch Eltern oder andere Personen abgewehrt. Diesen Ruf gilt es im Interesse der Gleichbehandlung der Schuler auch in Zukunft zu verteidigen.

Notenskala

Laut einer Vereinbarung der Fachschaft werden in den Klassen 9-10 alle Schülerleistungen einheitlich bewertet:

Note ab	Deutso	he No	te	Bulgarische Note
	Name	Zahl	Punkte	
98%	+	+	15	6
95%	Sehr Gut	1	14	6
92%	-	-	13	
87%	+	+	12	
81%	Gut	2	11	
76%	-	-	10	L
70%	+	+	9	5
63%	Befriedigend	3	8	
56%	-	-	7	
50%	+	+	6	4
43%	Ausreichend	4	5	•
36%	-	-	4	
30%	+	+	3	3
25%	Mangelhaft	5	2	
21%	-	-	1	2
0%	Ungenügend	6	0	2

Für die Oberstufe (Klassen 11-12) gilt folgendes System:

Note ab	Deutso	he No	te	Bulgarische Note
	Name	Zahl	Punkte	
95%	+	+	15	
90%	Sehr Gut	1	14	6
85%	-	-	13	
80%	+	+	12	
75%	Gut	2	11	
70%	-	-	10	_
65%	+	+	9	15
60%	Befriedigend	3	8	
55%	-	-	7	4
50%	+	+	6] 4
45%	Ausreichend	4	5	•
40%	-	-	4	
34%	+	+	3	3
27%	Mangelhaft	5	2	
20%	-	-	1	2
0%	Ungenügend	6	0	_

Diese Berechnung gilt in allen Klassenstufen und ist einheitlich unabhängig davon, ob es sich dabei um Noten (1-6) oder um Notenpunkte (0-15) handelt.

Hierbei gilt es zu beachten, dass die Klassen 9 und 10 lediglich mit deutschen Noten 1-6 bewertet werden; Tendenzen tauchen nicht auf den Zeugnissen auf.

Für die Klassen 11 und 12 gilt dagegen das deutsche Punktesystem 0-15.

Operatorenliste Mathematik der KMK

Zur Vereinheitlichung und Standardisierung von Aufgabenstellungen, sowie zur Förderung von Transparenz, gilt im Fach Mathematik in der Deutschen Abteilung die Operatorenliste der KMK (Stand: Oktober 2012).

In der Regel können Operatoren je nach Zusammenhang und unterrichtlichem Verlauf in jeden der drei Anforderungsbereiche (AFB) eingeordnet werden; hier soll der überwiegend in Betracht kommende Anforderungsbereich genannt werden. Die erwarteten Leistungen können durch zusätzliche Angabe in der Aufgabenstellung präzisiert werden.

Operator	Definition	Beispiel	
Anforderungsbereich I			
Angeben, nennen	Objekte, Sachverhalte, Begriffe oder Daten ohne nähere Erläuterungen, Begründungen und ohne Darstellung von Lösungsansätzen oder Lösungswegen aufzählen	Geben Sie drei Punkte an, die in der Ebene e liegen.	
beschreiben	Strukturen, Sachverhalte oder Verfahren in eigenen Worten unter Berücksichtigung der Fachsprache angemessen wiedergeben	Beschreiben Sie den Verlauf des Graphen von f im Diagramm. Beschreiben Sie Ihren Lösungsweg.	
belegen	die Gültigkeit einer Aussage anhand eines Beispiels veranschaulichen	Belegen Sie, dass es Funktionen mit der geforderten Eigenschaft gibt.	
erstellen	Sachverhalte, Zusammenhänge, Methoden oder Daten in übersichtlicher, fachlich sachgerechter oder vorgegebener Form darstellen	Erstellen Sie eine Wertetabelle der Wahrscheinlichkeitsverteilung.	
vereinfachen	komplexe Terme oder Gleichungen auf eine Grundform oder eine leichter weiter zu verarbeitende Form bringen	Vereinfachen Sie den Funktionsterm der Ableitungsfunktion so weit wie möglich.	
Zeichnen, graphisch darstellen	eine maßstäblich hinreichend exakte graphische Darstellung anfertigen	Zeichnen Sie den Graphen von fin ein Koordinatensystem mit geeigneten Längeneinheiten.	
Anforderungsbereich	ch II		
anwenden	eine bekannte Methode auf eine neue Problemstellung beziehen	Wenden Sie das Verfahren der Polynomdivision an.	
begründen	Sachverhalte unter Nutzung von Regeln und mathematischen Beziehungen auf Gesetzmäßigkeiten bzw. kausale Zusammenhänge zurückführen	Begründen Sie, dass die Funktion f mindestens einen Wendepunkt hat.	
berechnen	Ergebnisse von einem Ansatz ausgehend durch Rechenoperationen gewinnen; gelernte Algorithmen ausführen	Berechnen Sie die Wahrscheinlichkeit des Ereignisses A.	
bestimmen, ermitteln	Zusammenhänge oder Lösungswege aufzeigen und unter Angabe von Zwischenschritten die Ergebnisse formulieren	Bestimmen Sie die Anzahl der Nullstellen von f in Abhängigkeit vom Parameter k.	

		·	
darstellen	Sachverhalte, Zusammenhänge, Methoden oder Verfahren in fachtypischer Weise strukturiert wiedergeben	Stellen Sie die Beziehung zwischen den Werten der Integralfunktion und dem Verlauf des Graphen von f dar.	
entscheiden	sich bei Alternativen eindeutig und begründet auf eine Möglichkeit festlegen	Entscheiden Sie, welche der Geraden die Tangente an den Graphen im Punkt P ist.	
erklären	Sachverhalte mit Hilfe eigener Kenntnisse verständlich und nachvollziehbar machen und begründet in Zusammenhänge einordnen	Erklären Sie das Auftreten der beiden Lösungen.	
erläutern	einen Sachverhalt durch zusätzliche Informationen veranschaulichen	Erläutern Sie die Aussage des Satzes anhand eines Beispiels.	
gliedern	Sachverhalte unter Benennung des verwendeten Ordnungsschemas in mehrere Bereiche aufteilen	Gliedern Sie den von Ihnen entwickelten Lösungsweg.	
herleiten	die Entstehung oder Entwicklung von gegebenen oder beschriebenen Sachverhalten oder Gleichungen aus anderen Sachverhalten darstellen	Leiten Sie die gegebene Funktionsgleichung der Stammfunktion her.	
Interpretieren, deuten	Phänomene, Strukturen oder Ergebnisse auf Erklärungsmöglichkeiten untersuchen und diese unter Bezug auf eine gegebene Fragestellung abwägen	Bestimmen Sie das Intergral und interpretieren Sie den Zahlenwert geometrisch.	
prüfen	Fragestellungen, Sachverhalte, Probleme nach bestimmten fachlich üblichen bzw. sinnvollen Kriterien bearbeiten	Prüfen Sie, ob die beiden Graphen Berührpunkte haben.	
skizzieren	die wesentlichen Eigenschaften eines Objektes, eines Sachverhaltes oder einer Struktur graphisch darstellen (eventuell auch als Freihandskizze) darstellen	Skizzieren Sie für die Parameterwerte -1, 0 und 1 die Graphen der jeweiligen Funktionen in ein gemeinsames Koordinatensystem.	
untersuchen	Eigenschaften von Objekten oder Beziehungen zwischen Objekten anhand fachlicher Kriterien nachweisen	Untersuchen Sie die Lagebeziehung der beiden Geraden.	
vergleichen	Gemeinsamkeiten, Ähnlichkeiten und Unterschiede darstellen	Vergleichen Sie die beiden Lösungsverfahren.	
Zeigen, nachweisen	Aussagen unter Nutzung von gültigen Schlussregeln, Berechnungen, Herleitungen oder logischen Begründungen bestätigen	Zeigen Sie, dass die beiden gefundenen Vektoren orthogonal sind.	
Anforderungsbereich III			
auswerten	Daten, Einzelergebnisse oder andere Elemente in einen Zusammenhang stellen, ggf. zu einer Gesamtaussage zusammenführen und Schlussfolgerungen ziehen	Werten Sie die Ergebnisse in Abhängigkeit vom Parameter kaus.	
beurteilen, bewerten	zu Sachverhalten eine selbständige Einschätzung unter Verwendung von Fachwissen und Fachmethoden formulieren und begründen	Beurteilen Sie das beschriebene Verfahren zur näherungsweisen Bestimmung der Extremstelle.	

beweisen	Aussagen im mathematischen Sinne ausgehend von Voraussetzungen unter Verwendung von bekannten Sätzen und von	Beweisen Sie, dass die Diagonalen eines Parallelogramms einander halbieren.
	logischen Schlüssen verifizieren	
verallgemeinern	aus einem beispielhaft erkannten Sachverhalt eine erweiterte Aussage formulieren	Verallgemeinern Sie die für die unterschiedlichen Parameter gezeigten Eigenschaften.
widerlegen	Aussagen im mathematischen Sinne unter Verwendung von logischen Schlüssen, ggf. durch ein Gegenbeispiel falsifizieren	Widerlegen Sie die folgende Behauptung:
zusammenfassen	den inhaltlichen Kern unter Vernachlässigung unwesentlicher Details wiedergeben	Fassen Sie die Eigenschaften der Funktionen der Funktionenschar fk zusammen.